
Studies and Research  RFS 
 

Vol. 5 • No. 8 • May 2020  1 

 

A LITERATURE REVIEW ON THE GOAL PROGRAMING METHODS USED 

FOR PORTFOLIO OPTIMIZATION 
Mircea BAHNA 

Bucharest University of Economic Studies, ASE 
 

 

Abstract  

Portfolio optimization as method used in finance aims to identify the potential scenarios for 

satisfying conflicting/competing objectives like, for example, maximizing the return/profit 

and reducing the risk/loss. Thus, the motivation for choosing studying and applying this 

method arises from the potential scenarios that the portfolio managers or the individual 

investors have when applying this framework. Obviously, the decision itself will belong to 

these decision makers, in terms of yield / risk limits, and traders will achieve the execution 

of this goal. The analysis per se of the polynomial branch of the goal programming will be 

done to indicate the achievement of the limitations which are heavily mentioned since the 

very beginning of the modern theories of portfolio management, limitations given by the 

needs of incorporating the higher order moments in the investment decision. 
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Introduction  

Hereby paper aims at analysing the works in the field of portfolio goal programming with 

extra attention in the area of polynomial goal programming (PGP), the target being to 

present the researchers in this field with the current state of the literature and the research 

but also to present the investors with the possibility to use these methods. 

The paper is structured in three sections: first we present with the historical and 

global context of the goal programming and with the most relevant studies at various points 

in time, the second part clarifies the key concepts and models used in this field and the third 

part aims at presenting an empirical analysis of polynomial goal programing and the 

conclusions. 

 

Historical evolution of goal programming 

In the financial domain, as part of the Multi Criteria Decision Analysis, goal programing is 

offering various portfolio management methods and methodologies both to investors and 

portfolio managers but also to researchers. In the context of portfolio theory, it solves 

problems related to either achieving results given a certain set of resources and constraints 
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or determining the various resources needed to maximize results while minimizing 

resources by providing multiple optimal solutions/scenarios for achieving these results.  

In other words, goal programming aims at solving problems related to either achieving a set 

of results given a set or constraints or, vice versa, determining the needed resources in order 

to maximise the results while minimising the resources, offering multiple optimal scenarios 

for achieving these results. 

More specifically, as part of the portfolio theory, the works of Charnes et al (1959), 

Charnes and Cooper (1961) aimed, among others, at identifying the optimal portfolios for 

banks given various time frames. 

The set of rules regarding the goal programming in general and the need to use these 

methods for portfolio management in particular is attributed (Tamiz et al 1998) to H.A. 

Simon (1957) who defines the concept of “satisficing” objectives as a decision making 

strategy when multiple alternatives unknown ex-ante exist and appear sequentially. Thus, 

Simon creates the prerequisites for using the optimization methods we are analysing by 

identifying the need to either simplify the decisional space into optimization problems or to 

identify satisfying solutions (local optimum) in taking into account a big number of 

characteristics (preferences) in describing the optimization problem. In other words, 

although goal programming was not initially intended at satisfying the decision-makers’ 

(investor/portfolio manager) objectives, the method gain ground and became more and 

more used for this particular purpose. 

Romero (1991, 2004) concludes first that goal programming is among the most used 

methods to take a decision, with a methodology which is easy to understand and 

implement, further (2004) capturing the fact that the majority of research papers are using 

the lexicographic approach, the one in which weighing the preferences of decision-makers 

is not flexible, these preferences being mostly prioritised by importance (i.e. the first being 

maximising the expected return, the second being minimising the risk, the third being 

maximising skewness and so on), showing that this approach risks at not being suitable for 

empirical purposes when the lexicographic function (of prioritizing the criteria to be 

optimised) is not well prepared. In the same paper (2004) Romero captures other 

methodologies of goal programming, such as MinMAx (Chebyshev) which aims to 

minimize the loss of the individual optimum (i.e. the optimum yield as the only goal will be 

superior to that yield when taking into account the risk, skewness etc.), thus aiming to 

minimize the difference between the 2 sets of optimal pairs. 

On the other hand, weighting the programming of objectives implies prioritizing constraints 

according to their importance, for example, return is always preferred to minimizing risk. 

The resulting optimal scenarios must take into account certain allowed deviation limits 

from the optimal, in other words, investors will set a certain margin of freedom in which 

the results may vary in reaching the optimal, i.e. a deviation of x% from an individual 

optimum for each constraint added to the model. 

Although in the research papers from the 80s it was presented more for theoretical purposes 

(ie Romero, 1986), since the 2000s the method of fuzzy programming, aiming at dealing 

with uncertainty, starts to be taken into account, often this methodology being 
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completed/complemented by simulation methods in order to identify the weights that are 

allocated to the optimization criteria. 

Getting closer to the current period, Kalayci et al (2019) analysed a number of 175 studies 

related to portfolio management according to the average-variance criteria of the last 2 

decades. Although the study mainly covers optimization based on the first two moments of 

the distribution (mean and variance), multi-objective methods are also taken into account, 

distinguishing between the following preference criteria: cardinality (related to the number 

of securities in the portfolio), trading costs, sector capitalization and so on. 

Two other aspects are worth mentioning in the context of this study: first, the calculation 

methodologies used in the analysed studies are similar to those for multi-objective 

programming, and the second is that other such efforts should also be mentioned in the 

literature. 

Omitted by the previous study are the research of Aouni et al (2014) and Colapinto et al 

(2017) which reveal an increased attention for goal programming in the context of portfolio 

theory always showing a preference for lexicographic (preemptive) and weighted methods 

(Archimedean ). At the same time, these two studies show an increase in the absolute 

number of studies based on the polynomial method. 

  

The concepts used in goal programming 

First of all we need to remind of Henry Markowitz (1995) proposed model. Given N assets 

(i=1, N), an observed period T, Pi(t) representing the price of asset i at time t, the return of 

asset i at moment t is Ri(t) as shown in equation (1): 
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The expected return for this asset i is provided by equation (2): 
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The variance for asset i’s returns, meaning the measure of risk is represented in equation 

(3). The covariance between any 2 assets (i,j) is computed in equation (4).  
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We can define the expected return and risk of any given portfolio using equations (5) and 

(6), where wi represents the relative weight of asset i in the portfolio.  
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Following Markowitz’s theory, the optimization model is given by equation (7). In this 

context, and investor would choose for the portfolio with the highest return at a given risk 

or the other way around. 
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The optimization of the problem presented in equation (7) is done taking into account the 

hypothesis of normal distribution of returns, a hypothesis that is rejected by most 

researchers since Mandelbrot (1963) and Fama (1965) thus advancing the need to address 

the problem of asymmetry (skewness) and that of excess kurtosis in empirical distributions 

of assets’ returns. Other assumptions are made in order to find a solution for this model, 

such as the lack of transaction costs and the financial efficiency of the capital markets. 

Subsequent empirical studies, most of them on emerging markets, reject these hypotheses 

from Markowitz's theory. 

The simplest mathematical description of goal programming takes into account, as 

previously stated, the optimization (minimization / maximization) of a Z function defined 

as follows: 

 (8) 
A more complex definition is given by Orumie (2013) in the context of the need to 

formulate an efficient method of solving lexicographic programming: 

(9.1) 

subject to: 

 (9.2) 

 (9.3) 

 and  repectively representing the negative and positive deviation variables, 

representing at the same time the quantification of the sub/over-achievement of the optimal 

target for a certain criterion (sub-objective)  representing the individual targets for each 

criterion taken into account in the optimization function. 
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Obviously, as previously described, in the case of lexicographic programming , the 

preference parameters, are ranked  thus giving the investor / portfolio manager 

the opportunity to express their preferences. 

Getting back to Markowitz's model, by applying the lexicographic model we can describe 

the following optimization function: 

 (9) 

The simplified version of the MinMax model (Chebyshev) is shown below,  

representing the local optimum, given the constraint to optimize both objectives 

simultaneously: 

 (10) 

The representation of the weighted goal programming model is shown as: 

 (11) , s.t. (9.2), (9.3) 

with  and  being the weights associated to the negative and positive deviations 

respectively.  

 

Polynomial goal programming 

Polynomial goal programming (PGP) is a technique that allows us, among other things, to 

incorporate higher order moments (skewness and kurtosis) in the selection and management 

of the portfolio. The ultimate goal of the PGP model is to minimize deviations between the 

optimum of each objective and the aggregate final objective. Among the advantages of 

using this model are: the existence of an optimal solution, the flexibility to incorporate 

investors’ preferences and the relative simplicity of calculation methods that are use, and 

the fact that the model is general enough to include investors’ preferences related to higher 

order moments, skewness and kurtosis. 

As shortcomings of the multi-objective programming model we identify the fact that the 

preference parameters are randomly entered in the model, not actually taking into account 

the real preferences of investors. Thus the working hypotheses in which a set of natural 

numbers taken independently of market preferences can be considered rather restrictive, 

although they facilitate the design and interpretation of the model, they can significantly 

distort the empirical results. The solutions for this limitation came from Davies and Kat 

(2009) who identified and then developed the solution proposed by Lai (1991), that of 

using the marginal rate of substitution between objectives, and especially through the work 

of Proelss and Schweizer ( 2009) which, processing a sample from over one hundred hedge 

funds, empirically identified investors' preferences for the various higher order moments, 

further managing to transpose the parameters identified in the multi-objective programming 

model. 

We define the spatial components of multi-objective optimization as follows*: 

• Decisional space – having the subset of decisions with feasible or implementable 

solutions; 

• Objectives’ space – which represents the variable(s) that are actually optimised; 

 
* Jones, D. (2011), ”A practical weight sensitivity algorithm for goal and multiple objective 

programming”, European Journal of Operational Research, pp. 238-245. 
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• Parameters’ space – having all the possible parameters that are included in the 

multi-objective model; 

• Weights space – the set of preferences parameters used in the goal programming. 
 

Thus we’re defining the objectives’ space as being: 

 

 

 

 
where:  M is the returns’ distribution,  is their median,  =(x1, x2, ...,xn) is the 

transposed vector o the assets’ weights in the portfolio, V, S and K are the variance-

covariance, skewness-coskewness and kurtosis-cokurtosis matrices of M. 

To combine these parameters that form the multiple objective and maximize the expected 

return, including skewness while minimizing the even order moments of the distribution, 

we divide the optimization problem into two steps, in P1 calculating the individual 

optimum for each of the 4 moments: 

 

 

      P1 

 
subject to:  

 
To combine these objectives into a single objective function, according to the PGP 

methodology we need d1, d2, d3 and d4 parameters, the variables that quantify the 

deviations of the mean, variance, skewness and kurtosis from the optimal values M *, V *, 

S * and K * respectively. To obtain the optimal score, the P1 model is divided into four 

sub-problems that are solved individually. 

After calculating the optimal level of each moment, we move on to step 2 (P2) having the 

next optimization with the corresponding restrictions†: 

 
SR:  

 

                                                                              

P2 

 
subject to:   

 

 
 

† Davies, R.; Kat, H.; Lu, S., (2003), „Fund of hedge funds portfolio selection: A multiple-objective 

approach”, Journal of Derivatives & Hedge Funds, nr. 15, pg 91–115. 
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To illustrate multi-objective programming, we present here some empirical results, 

presented in a previous study‡: 

Table 1: Moments preferences (lambda)  

 M V S K 

Scăzut 1,5 2 1,2 1,1 

Mediu 3,5 5 2,5 1,2 

Ridicat 7 10 5 1,4 

Source: own computations 

 

Thus, from table no. 1 we can identify the preference parameters (lambda) of the investors 

proposed for BSE for each of the moments of distribution (MVSK). Table no. 2 reveals the 

results of the application of these parameters and the results of the 4 moments of 

distribution (MVSK) for a portfolio of 20 securities (selected in compliance with the 

criteria of liquidity selection, stock market capitalization and diversification by activity 

sectors). 

Table 2: Optimal results for the Moments* of the returns 

M Medium High High High    

V Medium High Medium  High   

S Medium Low Low   High  

K Medium Low Low    High 

SNP 28% 25% 6%  13%   

TGN  6%   8%   

BIO 4% 10%    91%  

SIF5   9%     

TBM 3%       

ALT 18% 2% 39%   3% 30% 

ALU  5%      

RRC 12% 6% 22%  16%  32% 

SCD 29% 21% 11%  19% 6%  

EBS 5% 9% 12%    18% 

CMP 1% 17% 2% 100% 22%   

M 0,0010 0,0013 0,0011 0,0021 0,0010 0,0014 0,0009 

V 0,0155 0,0150 0,0191 0,0297 0,0127 0,0216 0,0191 

S 0,3627 0,0433 0,4553 0,6702 0,1961 1,0700 0,2305 

K 3,3372 5,7119 2,6767 6,4203 4,5750 9,5923 1,7327 

As one of the objectives of the optimization system improves, at least one of the other 

objectives deteriorates as a degree of preference for investors. TLV, BRD, TEL, BRK, 

DAFR, SIF3 and SIF4 securities are left out from the portfolios. The conclusion is that they 

have mediocre values for all 4 moments of the distribution of return. In fact, these securities 

have the highest values for sensitivity to market fluctuations (Beta > = 1.2). Although 

 
‡ Bahna M. and Cepoi C.O., “Optimizarea selecției și gestiunii portofoliului folosind momentele de 

ordin superior”, RSF no 1, 2016 



RFS A literature review on the goal programing methods used for portfolio 
optimization 

 

8 Review of Financial Studies  

preferred for its superior return, having a total allocation in the portfolio that strictly 

optimizes the return, CMP fails to shine when moments of order 3 and 4 are taken into 

account. 

At the opposite end SNP, ALT, RRC, SCD and EBS assets are the most selected by 

investors according to the model. RRC and SCD are selected in a high proportion. These 

securities, strongly linked to investor preferences, are inelastic in terms of return 

fluctuations compared the market fluctuations, with a beta of up to 0.51. 

We present below only parts of the conclusions from our previous study, related to the 

application of the PGP methodology in optimizing the portfolio management: 

• The issues related to the computational part remain among the most difficult in 

applying the method; 

• Successful identification/computation of optimal weights related to preferences for 

higher order moments can be made; 

• Identified preference parameters can be reused when higher order moments are 

taken into account, at least for the BSE case. 
 

We add here some conclusions from recent studies, Livingston (2009) makes efforts to 

justify the use of the PGP method, showing the advantages given by the flexibility of 

choosing this method and the diversification of options available to the investors. Khan 

(2020) identifies a better frontier of efficiency and the possibility of substantiating the 

investment decision. Chen (2020) concludes as positive aspects of the methodology: 

stabilization of cumulative returns and a better response to market downturns. On the other 

hand, he points out that the calculation time, compared to similar methodologies, is longer, 

but reasonable for the results provided. Cizauskas and Haslifah (2019) emphasize in their 

study that the use of mean, variance and skewness, as parameters in the model, outperform 

other management methods using higher order moments. Gupta et al (2019) conclude on 

the advantages related to flexibility in decisions made by investors by using the parameters 

of mean, variance, skewness and entropy, showing instead that the calculation time for 

applying the model is longer. Other recent studies show that taking higher order moments 

into account while using the PGP method reduces exposure to entropy and uncertainty, 

respectively. 

We also conclude that the shortcomings of the multi-objective programming model, often 

related to the calculation time or the accurate identification of the real preferences of 

investors, are offset by the advantages of using the goal programming methodology in 

general and PGP in particular. The advantages given by the flexibility of the model are also 

the facilitation of the investment decision and especially of the portfolio selection and 

management taking into account self-preference criteria. In addition, the possibility of 

incorporating the higher order moments of the returns’ distribution allows for a more 

informed decision to be taken with respect to future earnings, the portfolio being less 

exposed to risks of uncertainty, for example. We cannot ignore the computing power 

needed to solve these proposed models by using the objective optimization methodology. 

What we can say for sure is that the methodology itself is one that aims to solve complex 

problems, in quadratic space in order to help the investors to treat them in linear space. But 

no matter how much the computational speed of these models is optimized, the research 

must identify more and more complex models, requiring new optimizations in the 

computational part itself. 
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